3d printing definition

3D Printing Definition Wiki

3D Printing Definition Wiki

3D printing definition what is is exatcly? 3d printing also known as additive manufacturing, is a manufacturing process where a 3D printer creates three-dimensional objects by depositing materials layer by layer in accordance to the object’s 3D digital model. 3D printing is also called additive manufacturing.

what is 3d printer

This term accurately describes how this technology works to create objects. "Additive" refers to the successive addition of thin layers between 16 to 180 microns or more to create an object. In fact, all 3D printing technologies are similar, as they construct an object layer by layer to create complex shapes.

Already it is possible to 3D print in a wide range of materials that include thermoplastics, thermoplastic composites, pure metals, metal alloys, ceramics and various forms of food. Right now, 3D printing as an end-use manufacturing technology is still in its infancy. But in the coming decades, and in combination with synthetic biology and nanotechnology, it has the potential to radically transform many design, production and logistics processes.

When was first 3D printer invented?

In real terms, however, the origins of 3D printing can be traced back to 1986, when the first patent was issued for stereolithography apparatus (SLA). This patent belonged to one Charles (Chuck) Hull, who first invented his SLA machine in 1983.

3d printing historySince the late 1980s, 3D printing has been used to create prototypes and concept models. These can significantly speed and otherwise assist design and pre-production processes, and as a result can save companies a great deal of money as well as improving the function of final products. Material extrusion 3D printers costing a few thousand and even sometimes a few hundred dollars can now make decent prototypes in many situations. More expensive 3D printers based on material jetting or powder bed fusion can now also produce highly detailed, functional prototypes out of a wide range of materials, and increasingly in full colour. There is even already a 3D printer -- the DragonFly 2020 -- that can 3D print prototype circuit boards.

3D printing molds and other tooling
The fastest growing area of 3D printing application is the additive manufacture of production tools. Traditionally, the molds, patterns, jigs, fixtures and other tooling used to make final products has been hand crafted at very significant cost. For example, the molds used to create plastic parts often costs tens of thousands of dollars. In contrast, it is now possible to use 3D printers to produce low-run injection molding masters for hundreds of dollars, and final high-run mold masters for a few thousand. The impact of 3D printing on traditional production processes can therefore be dramatic.

As mentioned above under 'binder jetting', it is also now possible to directly 3D print sand cast cores and molds. Traditional sand casting requires wooden patterns to be crafted, around which casting sand is packed. The wooden pattern then needs to be removed from the resultant mold or core (not always an easy or successful operation), before molten metal is poured in to cast the final part.

3d printer how it works?

Just like a document printer requires a digital document (a PDF or DOC file) for printing, 3D printers require digital design files of 3D objects (STL files are the most common). So you would first need to create or download a digital file that encodes the design of the iPhone cover.

The first step is the preparation just before printing, when you design a 3D file of the object you want to print. This 3D file can be created using CAD software , with a 3D scanner or simply downloaded from an online marketplace. Once you have checked that your 3D file is ready to be printed , you can proceed to the second step.

how 3d printer worksThe second step is the actual printing process. First, you need to choose which material will best achieve the specific properties required for your object. The variety of materials used in 3D printing is very broad. It includes plastics, ceramics, resins, metals, sand, textiles, biomaterials, glass, food and even lunar dust! Most of these materials also allow for plenty of finishing options that enable you to achieve the precise design result you had in mind, and some others, like glass for example, are still being developed as 3D printing material and are not easily accessible yet.

The third step is the finishing process. This step requires specific skills and materials. When the object is first printed, often it cannot be directly used or delivered until it has been sanded, lacquered or painted to complete it as intended.

The material chosen for the project will determine which printing methods are most suitable. Among these, the most commonly used techniques for each group of materials are described next.